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Abstract

Ground vehicle classification is performed using hidden Markov modelling of cepstral coeffi-
cients. The hidden Markov model (HMM) is used to represent audio signals. These signals are
obtained as the vehicles travel past audio sensor arrays. Well known HMM training algorithms
are applied to train models from training data. The trained models are used in two classification
rules: the MAP rule, and a list-based rule due to Forney. Under some general assumptions,
these approaches can be regarded as optimal. Using recordings from the ACIDS database, over
96% recognition rate on single vehicle classification is achieved. Multi-vehicle recordings from
this database were simulated and good classification results obtained.

1 Introduction

The acoustic emissions produced by a ground vehicle may be used to classify that vehicle into
its type. This capability may find application in the monitoring of militarily sensitive regions. If
the system detects a military vehicle, a human operator can be alerted and directed munitions
may be deployed. Such a system may eventually be able to address some of the requirements
currently fulfilled by land-mines.

Ground vehicle classification is an example of a hypothesis testing problem. An optimal
decision rule, in the sense of minimizing the probability of classification error, is given by the
maximum a posteriori decision (MAP) rule. This rule is applied widely in may classification
problems when a single decision is required. This is the case when signals from single vehicles are
being classified. In real world situations, vehicles may travel in convoys consisting of multiple
vehicles of multiple types. In such cases, the Forney decision rule [1] may be better suited. In
this rule, all vehicles whose corresponding discrimination functions are greater than a threshold
are placed on a list. The vehicles on this list constitute the guesses for the vehicles appearing
in the test signal. Forney shows this rule to be optimal in Neyman-Pearson like sense.

Whichever decision rule is used, the probability density functions (pdf’s) of the audio sig-
nals are required to implement the rule. These pdf’s are not explicitly available and must be
estimated from training data. The estimated pdf’s can then be used in the decision rules as
if they were the true pdf’s. This technique is referred to as the “plug-in” technique and its
optimality is discussed in [2, 3].

In this work, the pdf’s of the audio signals are assumed to be hidden Markov models
(HMM’s). The HMM consists of a sequence of states that are visited in a Markovian man-
ner. Each state of the HMM may be regarded as representing a particular sound from the
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vehicle. Similarly to the use of HMM’s in speech recognition, we use HMM’s with state pdf’s
that are Gaussian with non-zero means and diagonal covariances.

In this, as in many other applications, it is not the time domain signal that is modelled as an
HMM. Rather, as in speech recognition, the HMM models a feature vector obtained from the
time domain signal. In this work, the elements of this feature vector are cepstral coefficients.
Cepstral coefficients are calculated from the inverse Fourier transform of the logarithm of a
spectral estimate of the signal. They result in high performance while using a low dimensional
representation of the signal.

The remainder of the paper is organized as follows. In Section 2 we discuss the properties
of cepstral coefficients. In Section 3 we give some salient details of the HMM. In Section 4 we
provide details of the decision rules. In Section 5 we discuss the implementation and results. In
Section 6 we give some comments.

2 Cepstral coefficients

The cepstrum is an example of a homomorphic [4] signal processing technique. It is defined as
the inverse discrete Fourier transform of the log of the power spectral density of the signal. The
cepstral sequence ¢(n) corresponding to the power spectral density S(w) is given by

T o dw
c(n) = / log S(w)e“™ —. (1)
. 2w
Cepstral coefficients have a number of important properties that make them useful for classifi-
cation applications.

Spectral Change Rate Information Low order cepstral coefficients capture information about
the slowly varying properties of the spectrum. This is analogous to low order spectral co-
efficients capturing information about the slowly varying waveform. The slowly varying
components of the spectrum are often referred to as the spectral envelope.

Gain Invariance Multiplication of the underlying signal by a constant gain will affect only
the ¢(0) term. The feature vector can thus be made invariant to changes in gain by
exclusion of this term. Gain invariance is a highly desirable property in applications
where classification needs to be performed in the face of arbitrary changes in gain of the
underlying signal. This occurs in ground vehicle classification as the gain of the signal
depends on the distance between the vehicle and the audio senors, and is therefor highly
varying.

Known Statistical Properties In [5], cepstral coefficients obtained from a smoothed spectral
estimate and auto-regressive spectral estimates were considered. In [6] more explicit non-
asymptotic results were obtained for Gaussian signals and periodogram spectral estimate.
In both cases it was shown that the asymptotic covariance of cepstral coefficients is a
diagonal fixed signal independent matrix These properties justify the generally made choice
of diagonal matrices for the covariances of the Gaussian mixtures in the HMM.

De-convolution Ability Cepstral coefficients have a ability to de-convolve signals, and thus
potentially reduce unwanted channel effects. This property is critical in ground vehicle
identification since it can be used to compensate for different audio sensors of for signal
reverberation. Assuming a signal u results from passing an excitation w through a linear
filter with impulse response g, then

u=wKg (2)
where ® denotes convolution. In the frequency domain this is represented as

U(w) = W(w)G(w) 3)



a21

a1 < > a2

a1

’ ’
N (p1, Ry) N (2, R2)
Figure 1: A two state Gaussian hidden Markov model

where U (w), W (w), and G(w) are the Fourier transforms of u, w, and g respectively. Taking
the logarithm of both sides

logU(w) = log W (w) + log G(w). 4)

Hence in the log frequency domain, the component due to the excitation and due to the
filter are additive and they may be separated using cepstral mean subtraction [7].

Estimation of the cepstral coefficients requires an estimate of the spectrum S(w). A large
amount of advice on the spectral estimation is available to guide the practitioner, see for example
[8, 9]. Here we use Grenander and Rosenblatt’s “window method” of spectral estimation [8, 6].
This method results in a consistent spectral estimate. The spectral estimate is obtained from
the Fourier transform of a windowed auto-correlation estimate. The window used should result
in a spectral estimate that is non-negative. Not all windows satisfy this property, some of
them that do are listed in [8, 5.2.3]. Once a spectral estimate has been obtained, the cepstral
coefficients are obtained from Fourier transform of the logarithm of the estimate. The method
is more fully analyzed in [6].

3 Hidden Markov models

An HMM consists of a set of states each with an associated probability density function. At
any given time instant, an output process is generated from a particular state. The identity of
the state is not known. Intuitively, if we regard the modelled signal as consisting of a number of
distinct sounds, then each state represents a statistical description of each of these sounds. With
the passage of time, Markovian state transitions occur resulting in a sequence of states. These
transitions are Markovian. As mentioned earlier, here we use state pdf’s that are Gaussian with
diagonal covariance matrices t0 represent the sequence of feature vector of cepstral coefficients.

Figure 1 shows a two state HMM with Gaussian output pdf’s. The process begins in state
1 with probability 71 or in state 2 with probability 7o = 1 — m;. At each time increment, the
process either stays in the same state that it was in or it changes state according to a transition
probability. The state transition probability from the state at time ¢ — 1, denoted by s; 1, to
the state at time ¢, s¢, is denoted by as,_,s,. Once in the state s;, a K-variate Gaussian process
is generated with state dependent mean and covariance (us,, Rs,). Thus the parameter of the
HMM is given by A = (7, a, u, R), where 7 = {n3}, a = {aas}, p = {pg}, and R = {Rs} for
a,f=1,...,M where M is the number of HMM states.

We now present the standard assumptions of the HMM. For notational convenience, we
suppress the conditioning of the parameter of the HMM on the particular hypothesis, as all



hypotheses may be treated equally. Let y = {y;t = 1,...,T},y: € RE, be a sequence of
vectors generated by an HMM. Let s = {s¢,t =1,...,T},s: € {1,..., M}, be the sequence of
states that generated y. We can express the acoustic model p(y|A) as

pIA) =Y plyls, Np(s|\) (5)

seES

where S is the set of all possible state sequences, p(y|s, ) is the pdf of y given the state sequence
s, and p(s|A) is the pmf of the state sequence. Using the assumption that the state transitions
are first order Markovian we have

T
p(5|A) = Hastst—l (6)

where ag,s, , is the transition probability from state s;_; to state s;. The observation vectors
{y:} are assumed to be independent of each other given the state sequence {s;}. Thus

T

pls, A) = [ p(uelse, ) (7)

t=1
and hence

T
PN = D T aseseeap(yelse, V). (8)

seSt=1

The parameter of the HMM is estimated from training data. A computationally efficient algo-
rithm, due to Baum et al [10, 11], is available for the ML estimate of A\. Baum’s algorithm is
iterative and is an example of, what was later known as, the expectation-maximization (EM) ap-
proach [12]. Other training approaches are possible, e.g MMI, MDI, or minimizing the empirical
error rate, but their implementation is significantly more complicated than the ML approach.

The estimated pdf’s are subsequently used in the decision rules as if they were the true
pdf’s. Optimality of this approach is discussed in [3].

4 Decision Rules

Assuming that all pdf’s are explicitly known, we consider two decision rules. The first is the
maximum a posteriori (MAP) rule [13]. This test is optimal in the minimum probability of error
sense. The second is a list based rule due to Forney [1]. This rule is optimal in a generalized
Neyman-Pearson sense. Forney’s rule is used for the multi-vehicle problem as it allows a list of
vehicles to be produced for a given acoustic signal.

4.1 MAP Rule

The MAP rule is frequently applied in classification problems. Given a signal y to be classified,
the MAP rule chooses the ith hypothesis H; by

f{r}g)}cp(ylHi)p(Hi) 9)

where p(y|H;) is the pdf of the signal from hypothesis H; and p(H;) is the a priori probability
of that hypothesis. The MAP rule exhaustively partitions the decision space (See Figure 2.a).
into disjoint regions. This rule in suited for a situation where y resulted from a single vehicle.



4.2 List-Based Rule

Forney’s rule was originally obtained for finite-alphabet problems, but it is equally applica-
ble to the continuous-alphabet case. Given a signal to be classified, those hypotheses with a
discrimination function greater than a threshold n are placed on a list. If no discrimination
function is greater than the threshold, no decision is made and the signal is not classified.
Using a generalized Neyman-Pearson lemma, Forney derived the decision rule that maximized
the probability that the correct hypothesis is on the list for a given number of hypotheses er-
roneously on the list. Let H; be the hypothesis that the jth vehicle type generated the test
signal. Let A;(y),j =1,...,J be the discrimination functions and Q; = {y : A;(y) > n)} be the
jth decision region, where 1 represents a threshold. These {{2;} are not assumed to be disjoint,
see Figure 2, so more than one hypothesis can be placed on the list. Let N equal the average
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Figure 2: Decision regions in R?: (a) MAP test, (b) disjoint decision regions not covering the entire
space, (c) overlapping regions not covering the entire space.

number of incorrect entries on the list and Pp equal the probability that the correct hypothesis
appears on the list. We have

J
N = Z Pr (Hj erroneously on the list)
j=1
= Z Z Pr (y € Q; and Hj is true)
J J'#i
= }:E:MHM/N p(y|Hj)dy
i3 ye;
< J-1 (10)
and
J
Py, = Z Pr (Hj correctly on the list)
j=1
J
= ZPr (y € Q; and Hj is true)
j=1
J
= }:MHH/ p(y|Hj)dy
j=1 yEQ;
< 1 (11)

In [1] a generalized Neyman-Person lemma is proved to find the decision rule that maximizes
Pp for a given bound § on N i.e.

max Pp st. N <6 (12)
{Q;}



This yields the following optimal discrimination function

1, p(H;)p(y|H;)

= — Og
TN " p(H; )ply|Hjo)
i#i

Aj(y)

j=1,...,J (13)

and H; is placed on the list if the observation y satisfies A;(y) > n.

The loci of N and Pp for various thresholds produces a plot akin to the receiver operating
characteristic (ROC) curve [13]. Generally, it is the empirical values of these quantities obtained
from unseen test utterances that are useful as performance metrics. In Appendix A we show
how to calculated empirical values given test utterances.

5 Experimental Results

In this section we describe the implementation and testing of a HMM based vehicle classification
system. In this section we describe the data used, the calculation of the cepstral coefficients,
model training and testing, and the results for single and simulated multi-vehicle experiments.

5.1 Database

The approach was tested on the US Army Research Laboratory’s Acoustic-seismic Classifica-
tion Identification Data Set (ACIDS) database. This database consists of various numbers of
recordings from nine different vehicles. The number of recordings per vehicle varied from 7-60.
The vehicles were recorded in three sperate environments: arctic, desert, and normal. The
entire database was divided into two sections each consisting of approximately half of the total
recordings for all nine vehicles. One section was used to train an HMM for each vehicle type
and the other section was used to test the recognition performance of these models.

5.2 Preprocessing

The signal is first divided up into vectors consisting of 160 samples, which at the 1025.621 Hz
sampling rate, corresponds to approximately 0.15 seconds. A spectral estimate is obtained for
each vector using the “window method” of Grenander and Rosenblatt [8, 6]. In this method,
a windowed autocorrelation estimate is Fourier transformed to obtain a spectral estimate. De-
pending on the window used, the method can ensure consistent spectral estimates are obtained.
In [5], it is shown that cepstral estimates obtained from consistent spectral estimates are them-
selves consistent. The biased autocorrelation estimate is obtained from the inverse fast Fourier
transform (FFT) of the magnitude squared of the FFT of the vector. The autocorrelation es-
timate is windowed by a Parzen window of length K/3. The Parzen window is an example of
a window that results in a consistent spectral estimate [8, Section 6.2]. The windowed auto-
correlation sequence is FFT’ed to form an estimate of the spectrum. The cepstral coefficients
are obtained from the real part of the inverse FFT of the log spectrum. The zeroth order cep-
stral coefficient is discarded to accomplish gain invariance while the next 30 cepstral coefficients
constitute the feature vector that is modelled by the HMM.

5.3 HMM Implementation

For vehicle classification, the HMM is trained for a particular vehicle type using examples of
audio emissions from that vehicle type. Training involves estimating the parameter of the
HMM. This parameter consists of the means and covariances of the Gaussian pdf’s and the
state transition matrix. Once an HMM has been trained for each vehicle type, recognition of a
test signal from an unknown vehicle may be performed.



All vehicles are modelled by HMM’s with M = 8 states. The Gaussian pdf’s are non-zero
mean with diagonal covariance matrices. Training of the HMM’s is accomplished using a binary
splitting procedure, where the number of states is doubled at each stage, until the desired
number of 8 states is reached. At each stage, the parameter of the HMM is estimated using
a two step procedure. In the first step, estimation is accomplished using the Baum-Viterbi
algorithm [14]. In he second step, estimation is accomplished using the Baum algorithm [14].
This latter step yields a higher likelihood than assignment using the Baum-Viterbi only and
may also yield a consistent parameter estimate [15]. The estimate can not be consistent if
only the most likely state is used [16, 17]. Once the two steps are completed, each mixture is
split into two, each with means that are slight perturbations of their parent’s, and the two-step
procedure repeated.

5.4 Single Vehicle Classification

Single vehicle classification can be performed by the MAP rule. This involves calculating the
pdf of the test signal for each vehicle model. The results, in the form of a confusion matrix,
appear in Figure 3. The correct classification rate, defined as the number of test signals correctly
classified divided by the total number of test signals, is over 96%, which clearly demonstrate
the capacity of the HMM to discriminate between ground vehicle types.
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Figure 3: Ground Vehicle Confusion Matrix

5.5 Simulated Multiple Vehicle Classification

In real applications, ground vehicle classification systems must contend with more difficult
situations than the single vehicle case represented in the experiment above. For example,
sensors may record convoys consisting of an unknown number of vehicles of unknown types
travelling in close proximity. A reasonable assumption in this situation is that signals from
the vehicles are additive and independent, i.e. the emissions from one vehicle would not be
affected by the emissions from any neighboring vehicles. In order to mimic these conditions,
we synthesized recordings of multi-vehicle conveys by adding single vehicle emissions from the
ACIDS database. For each recording in the testing section of the database, a recording from
a different randomly chosen type of vehicle was added to the first recording. This combined
signal was then presented to the same HMM classifier used previously.
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Figure 4: Ground Vehicle ROC curve for single and simulated multi-vehicle classification

For multi-vehicle classification, confusion matrices are an unwieldy way to present the results.
For example, for two vehicles, the dimension of the confusion matrix is given by the number of
possible ways to choose 2 vehicles from 10, i.e. 45. Here we present the results in the form of a
multi-hypothesis receiver operating characteristic (ROC) curve discussed in section 13. Figure 4
shows the 2 vehicle ROC curve and for comparison, the single vehicle ROC curve is also shown.
The curves demonstrate that the HMM classifier has the capacity to successfully identify two
ground vehicles in the one recording, albeit with a significant decrease in performance compared
to the single vehicle case. Reducing this performance gap is a primary aim of future work.

6 Comments

In the above experiment HMM’s designed for single vehicles were used without modification in
recognizing multiple vehicles. Improvements in performance would be expected using models
representing multiple vehicles. These composite models may be obtained from single vehicle
HMM'’s assuming the feature vectors are additive and statistically independent. Cepstral feature
vectors do not have these properties. Feature vectors having these properties are those that
model directly the time domain signal and those that model in the spectral domain. Future
work will involve applying these representations to the problem.

As mentioned earlier, the signal, when multiple vehicles are present, is given by a superpo-
sition of individual vehicle signals. Estimating the number of individual signals in the recorded
signal is an example of an order estimation problem. This same problem arises in various appli-
cations, for example, in estimating the number of harmonic components in a periodic signal or
estimating the number of states in a hidden Markov model. Order estimation is a notoriously
difficult estimation problem. Several well-established techniques applicable to certain situations
are known. The general approach is to estimate the order that maximizes a penalized likeli-
hood function of the recorded signal. The penalized likelihood function comprises the sum of
the signal likelihood function for a given hypothesized order, and an additive penalty term for
that order. The penalty term prevents overestimation of the order. We intend to implement
and test vehicle counting via order estimation using various penalty terms including, but not
necessarily limited to, the Bayesian information criterion (BIC) penalty term and the Akaike



information criterion (AIC) penalty term.

A Empirical ROC curves

The z and y axes of the ROC curve are given by the values N and Pp respectively. In this
appendix we show how to calculate these quantities empirically from test data. The dependency
of these quantities on the threshold 7 is made explicit. Re-writing the expression for N we have

J J
> Z p(H / (A5 () > M| Hp)dy

(14)
where

Lif Ay (y) > 1

0 otherwise (15)

(a0 > = {
The quantities p(y|H;) and p(H; ) are approximated by their empirical values from the testing

set

p(y|Hy) =~ N 25 (y—a$")

Nj’
J
Zj:l N;

p(Hj)

X

(16)

where qff) is the nth out of N;/ testing signals from the j' hypothesis and §(-) is the Kronecker

delta function. Substituting these values yields

J Ny

N = N ZZZX > 1) (17)

Z] 0% j=1 J’ 1 n=1
i'#i
Thus the empirical value of N for a given threshold is obtained by counting the number of
times each signal in the test set appears in an incorrect decision region, and dividing by the
total number of signals. Proceeding in a similar manner for Pp(n) yields

Pp(n) ~ =T 1N] ;;x > 1) (18)

i.e. for a given threshold, count the number of signals that lie in their correct decision region,
and divide by the total number of signals.
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